Upper bounds on Nusselt number at finite Prandtl number
نویسندگان
چکیده
منابع مشابه
Rayleigh Bénard convection: bounds on the Nusselt number
Rayleigh-Bénard convection is the buoyancy-driven flow of a fluid heated from below and cooled from above. This model of thermal convection is a paradigm for pattern formation and turbulence [1] and it plays an important role in a large range of phenomena in geophysics, astrophysics, meteorology, oceanography and engineering. The problem under investigation is: given an incompressible fluid enc...
متن کاملOn upper bounds for infinite Prandtl number convection with or without rotation
Bounds for the bulk heat transport in Rayleigh-Benard convection for an infinite Prandtl number fluid are derived from the primitive equations. The enhancement of heat transport beyond the minimal conduction value (the Nusselt number Nu) is bounded in terms of the nondimensional temperature difference across the layer (the Rayleigh number Ra) according to Nu ≤ c Ra where c < 1 is an absolute co...
متن کاملTwo Upper Bounds on the Chromatic Number
Processor cache memory management is a challenging issue as it deeply impact performances and power consumption of electronic devices. It has been shown that allocating data structures to memory for a given application (as MPEG encoding, filtering or any other signal processing application) can be modeled as a minimum k-weighted graph coloring problem, on the so-called conflict graph. The graph...
متن کاملUpper bounds on the paired-domination number
A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and the subgraph induced by S contains a perfect matching. The minimum cardinality of a paired-dominating set of G is the paireddomination number of G, denoted by γpr (G). In this work, we present several upper bounds on the paired-domination number in terms of the maximum degre...
متن کاملUpper Bounds on the Total Domination Number
A total dominating set of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set in G. In this paper, we present several upper bounds on the total domination number in terms of the minimum degree, diameter, girth and order.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2016
ISSN: 0022-0396
DOI: 10.1016/j.jde.2015.10.051